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Abstract— As the cornerstone for joint dimension reduction
and feature extraction, extensive linear projection algorithms
were proposed to fit various requirements. When being applied to
image data, however, existing methods suffer from representation
deficiency since the multi-way structure of the data is (partially)
neglected. To solve this problem, we propose a novel Low-Rank
Preserving t-Linear Projection (LRP-tP) model that preserves
the intrinsic structure of the image data using t-product-based
operations. The proposed model advances in four aspects: 1)
LRP-tP learns the t-linear projection directly from the tensorial
dataset so as to exploit the correlation among the multi-way
data structure simultaneously; 2) to cope with the widely spread
data errors, e.g., noise and corruptions, the robustness of LRP-
tP is enhanced via self-representation learning; 3) LRP-tP is
endowed with good discriminative ability by integrating the
empirical classification error into the learning procedure; 4) an
adaptive graph considering the similarity and locality of the
data is jointly learned to precisely portray the data affinity. We
devise an efficient algorithm to solve the proposed LRP-tP model
using the alternating direction method of multipliers. Extensive
experiments on image feature extraction have demonstrated the
superiority of LRP-tP compared to the state-of-the-arts.

Index Terms— Adaptive graph, low-rank tensor representation,
robust feature extraction, t-linear projection learning, tensor-
product (t-product).

I. INTRODUCTION

IN FIELDS of image processing and computer vision,
it is observed that the real-world data drawn from the

high-dimensional ambient spaces are likely to approximately
reside in low-dimensional intrinsic subspaces [1]. To well
discover the underlying affinity of data, the projection learning
approaches learn explicit projection bases to map the high-
dimensional data into the low-dimensional subspaces, for
joint dimension reduction and feature extraction. Along this
research direction, the linear projection models are particularly
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attractive owning to the effectiveness with low computational
costs [2]. Typically, Principal Component Analysis (PCA) [3]
and linear discriminant analysis [4] were designed with dif-
ferent assumptions on the criteria of the subspaces.

In practice, the similarity graph plays a key role in revealing
the intrinsic relationship of data [5]. In this respect, the graph-
based projection learning witnesses enhanced performance by
exploring the data similarity [6], [7]. Many previous methods
pre-compute graphs from the data drawn from the ambient
spaces, which may suffer from the side effect of the cor-
ruptions, e.g., noise and occlusions. To solve this problem,
the recent works adopt the adaptive graph learning scheme in
both unsupervised [5], [8] and supervised scenarios [9]. As
such, the similarity and locality of the data are learned in a
flexible manner to portray the relationship of data precisely.

Focusing on general data processing, classical projection
learning methods primarily use vectors to represent samples.
That is, to process the image set that naturally has a three-way
structure,1 these algorithms flatten the image data into vectors,
breaking down the spatial coherency of images. 2D Projection
(2DP) learning was proposed to alleviate this side effect to
some extent. The essence is to learn the linear projection on
either the row or the column space of the images [10]. In this
respect, 2DPCA [11] and 2D Locality Preserving Projection
(2DLPP) [12] generalize the PCA [3] and LPP [6] models,
respectively. Later, the models in [13]–[16] substitute robust
norms for the classical Euclidean metric to process corrupted
data. For 2DP, however, only partial of the image structure
is retained in the corresponding row/column direction. Con-
sidering this limitation, the Multi-Linear Projection (MLP)
learning models [17]–[22] use the tensor representation to
preserve the multi-way data structure. By learning projections
from the unfoldings of tensors along all modes, not only the
row and column spaces of images are considered, but also the
cross-sample structure is exploited. In the sense, 2DP can be
considered as a special case of MLP where only one unfold-
ing along the row/column direction is considered. However,
learning the projections separately from different unfoldings
of tensors, existing MLP methods suffer from representation
sub-optimality since they fail to exploit the correlation among
the multi-way structure simultaneously [23].

1We use “way” to denote the structure of data, and the three-way structure
of an image set indicates the two-way structure within images as well as the
cross-sample structure.
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On the other hand, most of the aforementioned methods
are likely to encounter problems in real scenarios due to the
ubiquitous corruptions, e.g., noise and occlusions. Recently,
the representation-based feature extraction has drawn consid-
erable attention since it can handle corruptions by exploiting
the fact that the optimal representations of the data are
often sparse with respect to an overcomplete dictionary [24].
Using a dictionary consisting all training samples, one sample
can be expressed by a linear combination of the samples
in current dataset, which is called the self-representation
property. The sparse representation [24], [25] and low-rank
representation [26] were then proposed by imposing differ-
ent constraints on the representation matrix. They use the
representation coefficients as the new features, and thus, the
dimensions of the extracted features equal to the number of
training samples. This will bring computation burdens when
many training samples are included. Besides, the methods
in [24]–[26] are transductive ones and cannot handle new
samples that are not involved in the training phase. To solve
these problems, the works in [27]–[29] bond the representation
learning and linear projection, known as the representation-
based projection learning. They provide a setting where cor-
ruptions are alleviated via the self-representation data, from
which the linear projection is learned. Algorithms within this
category work in an inductive way since they can project the
unseen samples for feature extraction. Continuing along this
vein, the algorithms in [30]–[33] work in the unsupervised
setting, whereas the model in [34] can be applied to both
unsupervised and semi-supervised learning. To improve the
discriminative ability of the extracted features, the works
in [35]–[39] make use of the prior information from class
labels. Specifically, in [35], [36], the discrimination is explored
by maximizing the scatter of the projected between-class sam-
ples while minimizing that of within-class samples, inspired
from discriminant analysis [40]. In the meantime, differ-
ent regression-type modules are designed to incorporate the
empirical classification error for discrimination enhancement
[37]–[39]. However, these algorithms necessity the vectoriza-
tion of samples. Thus, they suffer limitations when being
applied to images since the multi-way structure residing in
the dataset is sacrificed, and this side effect is irreversible for
subsequent tasks.

To simultaneously exploit the correlation among the
multi-way data structure, the tensor-product (t-product)
based operations [41], [42] were proposed to overcome the
limitation of the unfolding operation. Based on t-product,
the “t-linear” combination of the tensor data has shown
advanced performance in multi-way data clustering [43]–[46]
and sparse coding [47] when compared to the matrix-based and
unfolding-based methods. In light of the aforementioned con-
cerns, we propose a Low-Rank Preserving t-Linear Projection
(LRP-tP) model within the category of representation-based
projection learning for robust image feature extraction. The
key contributions of this paper are summarized as follows.

1) We propose a novel LRP-tP model for robust
image feature extraction. Using t-product-based operations,
the t-linear projection is learned by simultaneously exploiting
the correlation among the multi-way data structure. Moreover,

LRP-tP provides a physical interpretation on the learned
projection basis, which resembles the linear projection basis
in the vector space.

2) LRP-tP preserves the low-rankness of the self-
representation tensor to alleviate data corruptions. The self-
representation and projection learning mutually promote each
other so as to achieve the overall optimum.

3) To improve the discriminative ability of the extracted
features, LRP-tP works in a supervised manner by introducing
a regression-type module. Moreover, an adaptive graph is
learned simultaneously to receive benefits from the similarity
and locality information of samples.

4) We design an iterative algorithm to solve the LRP-
tP model using the alternating direction method of multipli-
ers. Extensive experiments have shown that LRP-tP largely
improves the effectiveness of the representation-based projec-
tion learning and competes well with the state-of-the-arts.

The remainder of this paper is organized as follows.
Section II reviews the related work and preliminaries. Then,
the LRP-tP model is elaborated in Section III. Extensive
experimental verifications and model analysis are provided in
Section IV to lead a clear understanding. Finally, Section V
concludes the paper.

II. RELATED WORK AND PRELIMINARIES

A. Representation-Based Projection Learning

Generally, the representation-based projection learning
exploits the self-representation data to alleviate corruptions,
and devises different error terms and regularizers to learn the
optimal projection from the self-representation data. Since the
proposed LRP-tP also belongs to this category, we briefly
review the closely-related works, i.e., the Low-Rank Embed-
ding model (LRE) [29], the Latent Low-Rank and Sparse
Embedding model (LLRSE) [38], and the Constrained Dis-
criminative Projection Learning model (CDPL) [39].

Let X = [x1, . . . , xh] ∈ R
d×h be the data matrix where each

column corresponds to a sample. LRE learns the projection
considering the self-representation data as

min
P,E,Z

�E�2,1 + λ�Z�∗

s.t . P � X − P � X Z = E, P � P = I, (1)

where P ∈ R
d×b represents the projection basis, and b ≤

min(d, h) is the number of basis vectors; Z ∈ R
h×h denotes

the self-representation matrix, constrained by the matrix
nuclear norm � · �∗; E ∈ R

b×h represents the error matrix.
The success of LRE in dealing with data corruptions verifies

the effectiveness of representation-based projection learning.
Later, two supervised methods were proposed to improve the
discriminative ability of LRE together with other concerns.
LLRSE promotes the row-sparsity of the learned projection
basis vectors such that only partial variables are retained, for
joint feature selection and projection learning:

min
P,E,Z ,R

�E�2,1+λ1�Z�∗+λ2�H − P � X�2
F +λ3�P�2,1

s.t . X − RP � X Z = E, R� R = I, (2)
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TABLE I

SUMMARY OF BASIC TENSOR NOTATIONS

where H ∈ R
c×h comes from data labels, and c is class

number; R is the dual variable of the projection matrix P ∈
R

d×c, and R� R = I removes the orthogonal constraint on P
to facilitate optimization; �P�2,1 is used for the row-sparsity
of P .

CDPL uses the data labels to construct a binary graph to
exploit the locality of samples as:

min
P,E,Z ,T ,D

�E�2,1 + λ1�Z�∗ + λ2�Z�1

+λ3�H − T D�2
F + λ4tr(Z L Z �)

s.t . P � X − P � X Z = E, P � P = I, Z ≥0, D =[P � X; 1�],
(3)

where L is the Laplacian matrix of the binary graph,
and tr(Z L Z �) measures the consistency between the label
graph and the self-representation coefficients; a transformation
matrix T is introduced to enable the flexibility of learning
more basis vectors than the class number, and thus, the optimal
projection P can alleviate the potential side effect of [29], [38]
when samples are limited.

B. The Tensor Representation

In this section, we introduce the tensor representation and
the t-product-based operations. Please refer to [41], [45], [46],
[48] for details. Throughout this paper, the calligraphy letters
denote the third-order tensors. It is convenient to split a tensor
into different submodules, and to devise an index on each
submodule. Specifically, given X ∈ R

n1×n2×n3 , X (i, j, :) ∈
R

1×1×n3 represents a tube; X (i, :, :), X (:, j, :), and X (:, :, k)
denote the horizontal, lateral, and frontal slices respectively;
X (:, j, :) and X (:, :, k) are interchangeable with X( j ) and X (k)

respectively, for notation simplicity. The Frobenius norm (F-
norm) of X is defined as �X�F := (

�
i, j,k |X (i, j, k)|2) 1

2 , and

�X�F L1 := �
j (

�
i,k |X (i, j, k)|2) 1

2 denotes FL1-norm by
summing the F-norms of the lateral slices. X f := fft(X , [ ], 3)
applies fast Fourier transform (FFT) along the third direction
of X . The tensor (conjugate) transpose X � ∈ R

n2×n1×n3 is
obtained by (conjugate) transposing all frontal slices of X and
then reversing the orders of the (conjugate) transposed slices
from 2 to n3. The notations are summarized in TABLE I.

For X ∈ R
n1×n2×n3 , commonly-used tensor manipulations

include the block circulant operator

bcirc(X ) :=

⎡
⎢⎢⎢⎣

X (1) X (n3) . . . X (2)

X (2) X (1) . . . X (3)

...
. . .

. . .
...

X (n3) X (n3−1) . . . X (1)

⎤
⎥⎥⎥⎦ , (4)

the block vectorizing operator and its inverse

bvec(X ) :=

⎡
⎢⎢⎢⎣

X (1)

X (2)

...

X (n3)

⎤
⎥⎥⎥⎦ , bv f old(bvec(X )) := X , (5)

and the block diagonalizing operator and its inverse

bdiag(X ) :=

⎡
⎢⎢⎢⎣

X (1)

X (2)

. . .

X (n3)

⎤
⎥⎥⎥⎦ ,

bd f old(bdiag(X )) := X . (6)

With these manipulations, the t-product is defined as fol-
lows.

Definition 1. [41] Let X ∈ R
n1×n2×n3 and Y ∈ R

n2×n4×n3 ,
the tensor-product (t-product) X ∗Y is an n1 ×n4 ×n3 tensor:

X ∗ Y := bv f old(bcirc(X ) bvec(Y))

:= bd f old(bcirc(X ) bdiag(Y)). (7)

Some t-product-based operations are introduced as follows.
Definition 2 [41]: For X ∈ R

n1×n2×n3 , the Singular Value
Decomposition (t-SVD) of X is defined as

X := W ∗ S ∗ V �,

where W ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are orthogonal,
and S ∈ R

n1×n2×n3 is f-diagonal (i.e., all frontal slices are
diagonal matrices).

Definition 3 [46]: The multi-rank of X ∈ R
n1×n2×n3 is a

vector in R
n3×1 where the k-th entry is the rank of X (k)

f .
Definition 4 ( [45], [46]): The t-SVD-based Tensor Nuclear

Norm (t-TNN) of X is defined as the sum of the singular
values of all frontal slices of X f as

�X�� :=
n3	

k=1

�X (k)
f �∗ :=

min{n1 ,n2}	
i=1

n3	
k=1

|S(k)
f (i, i)|, (8)

where S(k)
f is obtained from the complex-valued matrix SVD

as X (k)
f = W(k)

f S(k)
f V (k)�

f .
The t-TNN is proved to be the tightest convex relaxation to

the l1-norm of the tensor multi-rank, and �X�� is computed
from the rank of bcirc(X ) [46]. It has been validated that the
t-TNN can exploit the structural information of a tensor better
than the unfolding-based tensor nuclear norm [46].

The following fact (Fact 1, [41]) will be used to prove the
Theorem 1 and to derive some optimization tricks.

Fact 1. Suppose X ∈ R
n1×n2×n3 , Fn3 is the n3 × n3

normalized discrete Fourier transform (DFT) matrix (which
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Fig. 1. The twist and squeeze operators.

Fig. 2. The self-representation of the tensorial dataset via t-linear combination
(samples within the same class are in the same color).

is unitary), F �
n3

is the conjugate transpose of Fn3 . The block-
circulant matrix bcirc(X ) can be block-diagonalized as

(Fn3 ⊗ In1) · bcirc(X ) · (F �
n3

⊗ In2) = bdiag(X f ), (9)

where ⊗ denotes the Kronecker product.
The twist and squeeze operators are used to arrange data

as third-order tensors [45], [48]. As shown in Fig. 1, given
a sample X ∈ R

n1×n2 , the twist operator twi st (X) = X ∈
R

n1×1×n2 transforms a sample into a third-order tensor where
the sample is laterally oriented. The squeeze operator is the
inverse of twist as squeeze(X ) = X . To obtain the tensorial
representation of the dataset, the laterally oriented samples are
stacked along the column direction.

C. Self-Representation Tensor

Using the twist operator to construct the data tensor, the self-
representation model [43], [45] is expressed as follows.

max
Z

�X − X ∗ Z�2
F + λR(Z), (10)

where X ∈ R
m×h×n is the twisted data tensor, m and n are

the row and column numbers of images, and h is the number
of samples; Z ∈ R

h×h×n is the self-representation tensor;
R(·) is used to regularize Z . As shown in Fig. 2, the j -th
laterally oriented sample can be represented by the t-linear
combination of other samples as X( j ) = X ∗ Z( j ), where the
i -th tube of Z( j ), i.e., Z(i, j, :), is the encoding tube that uses
the i -th sample to represent the j -th sample. The ideal Z
holds a block diagonal property such that the coefficient tubes
in Z are nonzero only for representing samples from the
same class and remain zero otherwise. In practice, different
regularizers R(·) (e.g., sparse [43], low-rank [45]) can be
adopted to approximate the block diagonality of Z .

III. LOW-RANK PRESERVING T-LINEAR PROJECTION

In this section, after identifying the objectives, we introduce
the Low-Rank Preserving t-Linear Projection (LRP-tP) model.
An iterative optimization algorithm is devised to solve LRP-
tP under the framework of the Alternating Direction Method
of Multipliers (ADMM). Then, we analyze the computational
complexity of LRP-tP and compare it with existing works to
lead a clear understanding.

A. Objectives

With the requirements of real-world image processing,
a well-performing projection learning model should take into
account the multi-way data structure while being robust to
corruptions. In addition, the discriminative ability and the
underlying relationship of data should be preserved. More
specifically, our main concerns are introduced as follows,
formulated using t-product-based operations.

1) Improving Robustness: Let {X j ∈ R
m×n}h

j=1 be the
image set. A third-order data tensor can be constructed by first
twisting the samples as shown in Fig. 1 and then stacking the
twisted images along the column direction, i.e., X ∈ R

m×h×n .
The fundament of LRP-tP is expressed by

min
P,E,Z

�E�F L1 + λ1�Z��

s.t . P � ∗ X = P � ∗ X ∗ Z + E, P � ∗ P = I, (11)

where P ∈ R
m×b×n is the tensorial projection basis (projection

tensor) and b is the number of basis slices2; the error tensor
E measures the disparity between the projected sample pairs.
Usually, only a small fraction of data would be contaminated.
As such, we model the sample-specific errors using the tensor
FL1-norm � · �F L1; the low-rank constraint is imposed on Z ,
and we use t-TNN � · �� as a surrogate of the rank function
for computational tractability. Note that, 1) using the self-
representation data X ∗ Z , the robustness of the projection
tensor can be expected compared to directly learning P from
the raw data X ; 2) the physical interpretation of the “t-linear
projection” onto P resembles the linear projection in the vector
space by substituting t-product for traditional product operator.

2) Improving Discriminative Ability: While Eq. (11) is able
to preserve the intrinsic structures of the image data, it works
in the unsupervised setting and thus is inadequate to offer
good discrimination across the extracted features. When being
applied to subsequent tasks, e.g., classification and clustering,
the discrimination of the features is highly preferred. To this
end, we propose to minimize the empirical classification error
on the training set for enhancing the discrimination of the
learned projection tensor. Incorporating the empirical error for
projection learning, we design a regression-type module as

min
P

h	
j=1

l(H( j ), φ(X( j ),P)), (12)

where X( j ) is the j -th laterally oriented sample, H( j ) is con-
structed from the j -th data label, φ(·) is the feature extractor,
and l(·) is the loss function of the classifier imposed on the

2in analogy to basis vectors in linear projection learning.
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training set. Specifically, 1) focusing on t-linear projection,
the feature extractor is defined as φ(X( j ),P)) = P � ∗X( j ); 2)
let the total number of classes be c and the label of the j -th
samples be c j . The only nonzero tube of H( j ) ∈ R

c×1×n is
set to H(c j , j, :) = [1, . . . , 1] ∈ R

1×1×n; 3) the squared loss
l(H( j ), φ(X( j ),P)) = �H( j )−P � ∗X( j )�2

F is adopted for error
measure. Minimizing the empirical classification error across
all samples, Eq. (12) equals to min

P
�H − P � ∗ X�2

F , which

improves the discriminative power of P � ∗ X in terms of the
classification task.

3) Capturing Flexible Affinity: In real scenarios, the sim-
ilarity and locality of data are important in identifying the
affinity [32], [49]. However, this information is overlooked in
Eqs. (11) and (12). To solve this limitation, a straightforward
way is to introduce a graph regularizer

�h
i, j=1 Si, j �X(i) −

X( j )�2
F , where S ∈ R

h×h measures the data similarity and
Si, j is the (i, j)-th element of S. However, the raw data X
and the corresponding graph S are susceptible to corruptions.
Inspired by [5], [8], we impose the graph regularization on the
self-representation tensor as

min
A

h	
i, j=1

Ai, j �Z(i) − Z( j )�2
F =

n	
k=1

2 ∗ tr(Z(k)L AZ(k)�)

s.t . A� ∗ 1 = 1, A ≥ 0, Ai, j = 0 f or (i, j) ∈ �, (13)

where A indicates the adaptively learned affinity graph, which
is more robust and flexible than directly adopting a fixed
graph S; L A is the Laplacian matrix by L A = D − A and
D = diag(sum(A, 1)); the nonnegative constraint and the
column-wise sum-to-one constraint on A guarantee that the
affinity is a probability; � is the set of sample pairs (i, j)
where sample i and sample j come from different classes,
and thus, the constraint Ai, j = 0 for (i, j) ∈ � encourages
the locality of samples using the prior knowledge from training
labels. The motivation of introducing Eq. (13) lies in two
folds: 1) the label-oriented locality can effectively purify the
feature-oriented similarity learning. As the affinity matrix and
the representation tensor are jointly optimized, a clean affin-
ity matrix further promotes learning a precise representation
tensor; 2) it has been pointed out that the discriminative
power of the self-representation coefficients decreases when
the class separability is small [5], [50]. This side effect can
be reduced since the similarity learning is concentrated within
samples from the same class. To summarize, Eq. (13) preserves
the label-oriented locality so as to constraint the learning of
the affinity matrix, and this, in return, encourages learning a
precise self-representation tensor.

B. Model Formulation

Based on the above concerns, the LRP-tP model is formu-
lated as

min
P,E,Z,A

�E�F L1 + λ1�Z��
 �� 
Self-Representation

+ λ2�H − P � ∗ X�2
F
 �� 

Classification Error

+ λ3

n	
k=1

tr(Z(k) L AZ(k)�) + η�A�2
F


 �� 
Adaptive Graph

s.t . P � ∗ X = P � ∗ X ∗ Z + E, P � ∗ P = I,

A� ∗ 1 = 1, A ≥ 0, Ai, j = 0 f or (i, j) ∈ �, (14)

where λ1, λ2 and λ3 are the tradeoff parameters; �A�2
F is

used to prevent the trivial solution of A. As LRP-tP works
in a supervised manner, the parameter η can be determined
according to the underlying number of neighbors.

The proposed model naturally overlays the strengths from
self-representation, supervised projection and adaptive graph
learning for robust feature extraction. More specifically,

• The t-linear projection is learned by considering the
self-representation data to alleviate data corruptions; the
learning procedure works in a supervised manner by mini-
mizing the empirical classification error with a regression-
type module; an adaptive graph learning scheme is
incorporated to take advantage of the feature-oriented
similarity and label-oriented locality. The three modules
in Eq. (14) benefit from each other to achieve the overall
optimum.

• Eq. (14) is formulated in the third-order tensor space.
It learns the t-linear projection directly from the tensorial
dataset. Thus, the two-way structure within images and
the across-sample structure are simultaneously exploited.
Eq. (14) therefore enables the flexibility of modeling the
multi-way data.

• Introducing the regression-based classification term,
the dimensions of the projected samples are fixed to
the class number c. The optimal projection P can be
considered as a feature extractor that maps a new sample
Y ∈ R

m×1×n to P � ∗ Y ∈ R
c×1×n as the feature.

C. Optimization

In this section, we devise an iterative optimization algorithm
to solve the proposed LRP-tP model under the framework of
ADMM [51]. An auxiliary variable U with a constraint Z = U
is introduced to make Eq. (14) separable:

min
P,E,U ,Z,A

�E�F L1 + λ1�U�� + λ2�H − P � ∗ X�2
F

+ λ3

n	
k=1

tr(Z(k)L AZ(k)�) + η�A�2
F

s.t . P � ∗ X = P � ∗ X ∗ Z + E, P � ∗ P = I,

A� ∗ 1 = 1, A ≥ 0, Ai, j = 0 f or (i, j) ∈ �,

Z − U = 0. (15)

Accordingly, the augmented Lagrange function of Eq. (15)
is formulated as

L(P, E,U,Z, A)=�E�F L1+λ1�U�� + λ2�H−P �∗ X�2
F

+λ3

n	
k=1

tr(Z(k)L AZ(k)�)+ η�A�2
F + ρ

2
(�Z−U + C1

ρ
�2

F

+�P � ∗ X − P � ∗ X ∗ Z − E + C2

ρ
�2

F )

s.t . P � ∗ P = I, (16)

where C1, C2 are the Lagrange multipliers and ρ > 0 is the
penalty parameter. Eq. (16) can be alternatively optimized with
respect to five subproblems as follows.
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1) P-Subproblem: Fixing other variables except P ,
the optimization of Eq. (16) reduces to

min
P

λ2�H−P �∗X�2
F + ρ

2
�P �∗X − P �∗X ∗Z−E+ C2

ρ
�2

F

s.t . P � ∗ P = I. (17)

We introduce the following Theorem 1 to solve Eq. (17),
and the proof of Theorem 1 is given in APPENDIX.

Theorem 1: Given third-order tensors N1 and N2 with
matched dimensions, the solution of

min
R

�R� ∗ N1 − N2�2
F s.t . R� ∗ R = I (18)

is obtained as follows. Let the economy-size t-SVD [45] of
N1 ∗ N �

2 be W ∗ S ∗ V �. Then, R∗ = W ∗ V �.
With Theorem 1, let M1 = λ2X ∗ H� + ρ

2 (X − X ∗ Z) ∗
(E − C2

ρ )�, we can obtain the optimal P from the t-SVD of
M1.

2) E-Subproblem: The optimization of Eq. (16) with
respect to E becomes

min
E

�E�F L1 + ρ

2
�P � ∗ X − P � ∗ X ∗ Z − E + C2

ρ
�2

F , (19)

which can be solved via the soft-thresholding operator [44] on
the tensor FL1-norm. Let M2 = P � ∗ X − P � ∗ X ∗ Z + C2

ρ ,
the solution to Eq. (19) is obtained at

E∗(:, j, :)

=
⎧⎨
⎩

�M2(:, j, :)�F −1/ρ

�M2(:, j, :)�F
M2(:, j, :), if �M2(:, j, :)�F>

1

ρ
0, otherwise.

(20)

3) U-Subproblem: Fixing P , E , Z , and A, the optimal U
is computed from

min
U

λ1�U�� + ρ

2
�Z − U + C1

ρ
�2

F , (21)

which is a t-TNN minimization problem. Let M3 = Z + C1
ρ ,

Eq. (21) can be solved by applying the tensor tubal-shrinkage
operator on M3, according to [46] (Theorem 2).

4) Z-Subproblem: The subproblem associated with Z is
formulated as

min
Z

λ3

n	
k=1

tr(Z(k)L AZ(k)�) + ρ

2
(�Z − U + C1

ρ
�2

F

+ �P � ∗ X − P � ∗ X ∗ Z − E + C2

ρ
�2

F ). (22)

Recall that
�n3

k=1 tr(Z(k)L AZ(k)�) = 1
2

�h
i, j=1 Ai, j �Z(i) −

Z( j )�2
F . Based on Fact 1, Eq. (22) can be transformed into the

Fourier domain as independent problems with respect to the
frontal slices:

min
Z(k)

f

λ3tr(Z(k)
f L AZ(k)�

f )+ ρ

2
(�Z(k)

f −U (k)
f + C(k)

1 f

ρ
�2

F

+ �P (k)�
f X (k)

f −P (k)�
f X (k)

f Z(k)
f −E (k)

f + C(k)
2 f

ρ
�2

F ), (23)

where Z f , U f , P f , X f , E f , C1 f and C2 f are in the Fourier
domain, and k = 1, . . . , n. Setting the derivation of Eq. (23)
to zero,3 the optimal k-th frontal slice of Z f is obtained at

Z(k)∗
f = ((2λ3 + ρ)I + ρM �

5 M5)
−1

(ρM4 + ρM �
5 M6)(L A + 2I )−1, (24)

where M4 = U (k)
f − C(k)

1 f
ρ , M5 = P (k)�

f X (k)
f , M6 = P (k)�

f X (k)
f −

E (k)
f + C(k)

2 f
ρ . Then, we can recover Z via the inverse FFT as

Z = ifft(Z f , [ ], 3).
5) A-Subproblem: To find the optimal A, we solve the

following constrained problem

min
A

1

2

h	
i, j=1

Ai, j �Z(i) − Z( j )�2
F + η�A�2

F

s.t . A� ∗ 1 = 1, A ≥ 0, Ai, j = 0 f or (i, j) ∈ �,

(25)

where η�A�2
F is used to prevent the trivial solution. When

η is set to zero, only the affinity of the nearest neighbor
is preserved on A, whereas all training samples are equally
treated as neighbors when η is set to infinite. In this view,
by tuning η, we can adaptively preserve the neighbors for each
sample. However, η is difficult to tune since its value could be
continuous from zero to infinite. To relieve the computation
burden of parameter tuning, the work in [8] proposed to adjust
η by tuning the number of sample neighbors since the latter
is an integer and has explicit meaning.

As LRP-tP works in a supervised manner, the underlying
number of neighbors is known in advance. Thus, we do not
need to specify or tune the value of η in practical imple-
mentation. Instead, it is always feasible to know the number
of sample neighbors using the prior knowledge from training
labels, and accordingly, the number of neighbors is set to the
number of samples in current class minus one.

Note that without the constraint Ai, j = 0 for (i, j) ∈ �,
Eq. (25) can be solved column-by-column using the off-
the-shelf quadratic programming method [8]. In our setting,
we apply the optimization scheme on the nonzero subset of
each column of A such that only samples with the same class
labels are considered. Specifically, denote F ∈ R

h×h where
fi, j = �Z(i) − Z( j )�2

F is the (i, j)-th entry; ã j = A pind, j

where pind collects a subset from {1, . . . , h} for sample pairs
i ∈ pind and j belonging to the same class. The optimization
of the j -th column of A can be solved by optimizing ã j using

min
ã j

�ã j + 1

4η
f̃ j�2

F s.t . ã�
j ∗ 1 = 1, ã j ≥ 0, (26)

where f̃ j = Fpind, j . Eq. (26) can be solved using the off-the-
shelf solver. Once ã j is obtained, A pind, j can be recovered,
and other entries Ai, j for i /∈ pind remain zero.

3Eq. (23) is optimized in the complex domain. Please refer to [52] for
calculating the complex derivations.
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Algorithm 1: Solving the LRP-tP Model Eq. 14

6) Multipliers and penalty parameter: The multipliers
and penalty parameter are adjusted according to

C∗
1 = C1 + ρ(Z − U),

C∗
2 = C2 + ρ(P � ∗ X − P � ∗ X ∗ Z − E),

ρ∗ = min{μ ∗ ρ, ρmax}, (27)

where the penalty parameter ρ is iteratively updated to
improve the convergence behavior and to make the perfor-
mance less dependent on the initial value of ρ [51]; the
constant μ is empirically set to 1.9 throughout this paper.

The stopping criterion of the iterative algorithm is met when
the residuals defined below are small enough.

r1 = �Z − U�F/�X�F ,

r2 = �P � ∗ X − P � ∗ X ∗ Z − E�F/�X�F . (28)

The optimization procedure of LRP-tP is summarized in
Algorithm 1. Afterward, the twisted image samples can be
projected onto the optimized projection tensor for feature
extraction.

D. Discussion

1) Complexity Analysis: The complexities of basic opera-
tions are computed as follows. The (inverse) FFT of X ∈
R

n1×n2×n4 along the third direction takes the order of
O(n1n2n4 log(n4)); the t-product of X and Y ∈ R

n2×n3×n4

takes the order of O(max(n1, n3)n2n4 log(n4) + n1n2n3n4);
the economic-size t-SVD of X requires O(n1n2n4 log(n4) +
min(n1, n2)n1n2n4) operations.

Assume that h > m, c > m, m and n are comparable.
As the optimization of LRP-tP involves an iterative scheme,
we first investigate the computational cost of a single iter-
ation: 1) the main cost of the P-subproblem comes from
t-product and t-SVD that require a complexity of order
O(h2n log(n) + mh2n); 2) for the E-subproblem, the com-
putation of the temporary tensor M2 takes the complexity of
order O(h2n log(n)+ch2n), and the slice-by-slice thresholding
is negligible; 3) when solving the U-subproblem, the t-TNN
minimization consumes O(h2n log(n) + h3n) operations; 4)
the Z-subproblem consists FFT, matrix product, and matrix
inverse, costing O(h2n log(n) + h3n) operations; 5) the opti-
mization of the A-subproblem applies quadratic programming

on subsets of the columns of A, and its cost is negligible
compared with that of other subproblems; 6) the cost of
updating multipliers and penalty parameter is negligible. Since
h > c and we can always assume that h > log(n), one iteration
of the iterative scheme costs O(h3n) operations. Let the
number of iterations be T , the total computation complexity
of LRP-tP will be O(T h3n).

2) Comparison With Related Methods: Two state-of-the-art
models, i.e., LLRSE [38] and CDPL [39], provide insights into
our LRP-tP model on that they all conduct the representation-
based projection learning in a supervised manner. However,
the most fundamental difference lies in the fact that LLRSE
and CDPL use vectors to represent samples, while LRP-
tP does not resort to the vectorization operation such that
enhanced performance can be expected when dealing with
data that naturally have multi-way structures. Stacking the
vectorized samples into a matrix, LLRSE and CDPL cope
with the dataset using matrix manipulations, while LRP-tP
employs the t-product-based operations. That is, these models
are formulated in different spaces and their optimization
procedures are totally different accordingly.

In addition, LLRSE does not take the data graph into
consideration, and this may lead to performance degradation in
correctly identifying data affinity; CDPL solves this limitation
by using the labels to construct a binary graph. Although
the locality information of data is preserved, the pre-defined
binary graph is fixed and overlooks the similarity of data.
Besides, the computational complexities of LLRSE and CDPL
are O(T h3), where T and h are the number of iterations
and that of samples. In contrast, the optimization of LRP-
tP takes the complexity of order O(T h3n), where n is the
column number of image matrices. This is because, LRP-
tP employs the tensor-based operators to capture the multi-
way data structure such that the complexity is affected by the
intrinsic data dimensions.

IV. EXPERIMENTS

In this section, we evaluate the performance of LRP-tP
in extracting features from images via the classification task.
After introducing the experimental configurations, LRP-tP is
thoroughly compared with the state-of-the-arts. Then, we con-
duct the ablation study, parameter sensitive analysis, and
convergence analysis to promote the understanding of LRP-tP.

A. Experimental Settings

1) Datasets: Five commonly-used image databases are cho-
sen for model evaluation. AR database4 provides a popular
cropped version of the raw AR face database. The images are
captured in two sessions under varying expressions, illumi-
nation, and occlusions from scarfs and sunglasses; Extended
YaleB database5 contains frontal face images with expression,
pose, and illumination changes; FERET database6 consists a
cropped and scaled version of the raw FERET face dataset with

4http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html/
5http://vision.ucsd.edu/ iskwak/ExtYaleDatabase/ExtYaleB.html/
6https://www.nist.gov/itl/products-and-services/color-feret-database/
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Fig. 3. Samples from different databases.

TABLE II

STATISTICS OF THE DATABASES

variations in expression, pose, and illumination; CMU PIE
database7 is composed of face images with different poses,
illumination, expressions, and talking sequences. We collect
a subset of CMU PIE with illumination changes, resulting
in 43 images per subject; COIL-100 database8 contains objects
with a wide variety of complex geometric and reflectance char-
acteristics (toys, cups, etc). Images of each objects are taken
at pose intervals of five degrees, corresponding to 72 images
per class. The statistics of the databases are summarized
in TABLE II, and typical examples of samples are shown
in Fig. 3. We downsample all images to 32*32 pixels for
efficiency.

2) Competitors: To examine the performance of LRP-tP,
we compare it with nine projection learning models. Among
them, PCA [3] and 2DPCA [11] are baselines; Multilinear
Principal Component Analysis (MPCA) [17] and Multilinear
Discriminant Analysis (MDA) [18] use the unfoldings of
tensors, in unsupervised and supervised manners respectively;
five state-of-the-art representation-based projection learning
approaches are compared, in which LRE [29] and Low-
Rank Sparse preserving Projections (LRSP) [30] are unsuper-
vised models, and Extended Approximate Low-rank Projection
Learning (EALPL) [37], LLRSE [38], CDPL [39] are super-
vised ones.

3) Parameters: LRP-tP has three tradeoff parameters λ1,
λ2, and λ3. In our implementation, they are tuned from

7http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html/
8https://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php/

{10−3, 10−2, . . . , 103}. For the competitors, the model para-
meters are tuned according to the recommendations.

4) Classification Configurations: For quantitative compar-
ison, we adopt the classification task to evaluate different
models. Specifically, the database is divided into the disjoint
training and testing sets. The projection bases are learned from
the training set by solving different models. Afterward, images
in both sets are projected onto the learned projection bases.
The accuracies of correctly classifying the projected testing
samples into the corresponding projected training samples are
recorded. In all experiments, the nearest neighbor classifier is
adopted for classification. All tests are repeated ten times for
statistical stability.

In addition to the model parameters, the classification
accuracies also relate to the number of projection vec-
tors/slices b. For PCA, LRE, and LRSP, b is chosen from
five to min(h, 300) with a step of five; considering 2DPCA,
MPCA, and MDA, b is chosen from {2, 4, . . . , 32}; the num-
ber of projection vectors/slices of EALPL, LLRSE and the
proposed LRP-tP is fixed to the class number c; CDPL can
extract more projection vectors than the class number, and b
is therefore selected from {5, 10, . . . , min(4c, h)}. Afterward,
the best-performing classification results over all candidates of
b are used for comparison.

B. Results and Analysis

In this section, we provide comprehensive experimental
comparisons between LRP-tP and its competitors. Generally,
LRP-tP shows superiority and good generalization ability
in dealing with clean images, commonly-observed data cor-
ruptions (i.e., Gaussian noise, impulse noise, block occlu-
sions), and real-world occlusions. The detailed experiments
and related analysis are presented as follows.

1) Image Classification Accuracy: We use different algo-
rithms to learn the projection bases from the training set,
and then project the testing samples to extract features for
classification. All five databases are adopted for comparison.
The experimental results are reported in TABLE III.

• For AR, the training and testing sets are constructed by
randomly splitting the clean images in half; for EYaleB
and PIE, we randomly select ten images per subject
for training and the remainders for testing; similarly,
FERET is separated into disjoint training and testing
sets randomly, with five samples per subject for training
and the left two for testing. We find that, on the face
databases, LRP-tP and LLRSE consistently obtain the
best and second-best performance with the margins of
around 0.5%-6.6%, validating the effectiveness of the
representation-based projection learning with supervised
information. It is interesting to notice that, while closely-
related, LLRSE achieves relatively better performance
than CDPL. This may come from the function of feature
selection in LLRSE by encouraging the row-sparsity
of projection basis. This observation also provides a
potential research direction to improve the performance
of LRP-tP with constraints on the projection slices.

• For COIL-100, the training set consists ten over
72 images per class by random selection, and the
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TABLE III

PERFORMANCE COMPARISON (I.E., CLASSIFICATION ACCURACIES, STANDARD DEVIATIONS, AND THE NUMBERS OF BASIS VECTORS/SLICES) OF
COMPETING ALGORITHMS ON DIFFERENT DATABASES

Fig. 4. Robustness of competing algorithms to varying training sizes.

remainders are used for testing. LRP-tP obtains the
highest classification accuracy, followed by MDA. Since
the COIL-100 database consists objects with complex
geometric structures, this observation validates the
benefits from the multi-way data structure when dealing
with the data containing rich structures.

2) Robustness to Training Size: Many competing projection
learning models denote samples as vectors, except for 2DPCA,
MPCA, MDA. The vectorization operation not only sacrifices
the spatial structure of images, but also suffers problems
when the number of training images is small. To show the
influence of the training size, we compare the classification
results of different algorithms over varying numbers of training
samples per class. For the clean AR dataset, the number of
training samples per class is selected from {4, 6, 8, 10, 12}; as
to EYaleB, PIE, and COIL-100, we compare different models
with {5, 10, 15, 20, 25} samples per class in the training sets.
According to the results in Fig. 4, we have the following
observations:

• Compared to LRE, LRSP, EALPL, LLRSE and CDPL,
the performance of LRP-tP is less affected when the num-
bers of training samples are extremely small. Similarly,
the classification accuracies of MPCA are more stable
than PCA and 2DPCA. This shows that the multi-way
data structure can bring significant gains when samples
are limited.

• LRP-tP obtains satisfactory results with five training sam-
ples per class on AR, EYaleB, and PIE. For COIL-100,

the performance of LRP-tP is greatly improved by
expanding the training size from five to ten per class.
This is because images in COIL-100 have relatively large
variations such that more samples are needed to correctly
model the structures of the subspaces.

• For face databases, LRP-tP consistently obtains the best
performance. LLRSE and CDPL are comparable to LRP-
tP on AR and PIE. The accuracies of LLRSE and CDPL
decrease on EYaleB, but they are much better than other
competitors.

• On COIL-100, LRP-tP ranks in the first place and
MDA obtains good performance in most cases. The
performance of LLRSE and CDPL witnesses the steep
descent. This is because there are large variations between
different subjects in the COIL-100 database, and thus,
the multi-way structure of images will play an important
role in projection learning.

3) Robustness to Synthetic Corruptions: As images are
likely to be contaminated, the robustness of models is
important. We impose different kinds of data errors on the
EYaleB database to simulate commonly observed data errors,
i.e., Gaussian noise, impulse noise, and block occlusions,
where only partial of the training sets are contaminated.
In each trail, we randomly select ten images per class for
training, in which half images are imposed with varying
strengths of errors. The variance of the Gaussian noise varies
from 0.01 to 0.15, and the density of the impulse noise
varies from 0.05 to 0.4. The size of block occlusions varies
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Fig. 5. Robustness to varying variances of Gaussian noise.

Fig. 6. Robustness to varying densities of impulse noise.

from {0.05, 0.1, 0.2, 0.3, 0.4} of the original images, and the
occlusions are imposed at random positions. Examples of the
contaminated images and the classification results are shown
in Figs. 5-7, where the results of PCA and 2DPCA are ignored
for clear visualization.

We notice that: 1) LRP-tP shows advanced robustness to
different kinds of data corruptions; 2) although LLRSE and
CDPL have relatively good performance compared with other
models, their performance is not adequate when compared
to LRP-tP. This validates the strength of LRP-tP by using
t-product-based operations in multi-way data modeling; 3) the
performance of MDA decreases rapidly with data corruptions
since MDA lacks of the robust measure.

4) Robustness to Natural Occlusions: To compare the
performance of different algorithms thoroughly, we use the
naturally-occluded AR dataset to investigate the robustness
over real-world occlusions. Since the AR database contains
images occluded by scarfs and sunglasses, we construct three
testing cases by including one kind of occlusion in the first
two trials respectively and using the full database in the third
trial. The corresponding results are plotted in Fig. 8. We

Fig. 7. Robustness to varying percentages of block occlusion.

Fig. 8. Robustness to different natural occlusions.

find that, LRP-tP consistently achieves the best performance,
followed by LLRSE and MDA. In addition to the supervised
information, LLRSE takes advantage of self-representation
learning and sparse feature selection. Meanwhile, MDA makes
use of the multi-linear structure of images as well as the
between-class separability for improving the discriminative
ability. Generally, the representation-based projection learning
models achieve satisfactory results, validating their robustness
in dealing with natural occlusions.

C. Model Analysis

In this section, we experimentally analysis the LRP-tP
model for enhanced understanding.

1) Ablation Study: The ablation study is conducted to
examine the effectiveness of each module of LRP-tP. Specifi-
cally, the U subproblem uses t-TNN to encourage the block-
diagonality of the self-representation tensor; the H subproblem
introduces a regression-type module to improve the discrim-
inative ability; the similarity and locality of samples are
exploited via the A subproblem. We conduct experiments by
randomly selecting ten samples per subject for both databases,
and the results are reported in TABLE IV. This test shows that
the three modules of LRP-tP work collaboratively to obtain
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Fig. 9. Performance of LRP-tP over different settings of parameters.

the overall optimality, and the classification term receives high
importance compared to the other two modules.

2) Parameter Sensitivity: LRP-tP has three tradeoff parame-
ters λ1, λ2, and λ3. To show the performance of LRP-tP over
different parameters, we fix one parameter to one and examine
the effects of the other two parameters. We notice that:

• As plotted in the first and second columns of Fig. 9, the
performance of LRP-tP relies primarily on the choice of
λ2. This is because, incorporating the empirical classifi-
cation error into projection learning, the regression-type
module is beneficial for the classification task. Compared
to AR, EYaleB, and FERET, the performance of LRP-
tP is less affected by the values of λ2 on PIE and
COIL-100. This indicates that the discriminative power
obtained from the regression-type module is closely
related to the intrinsic properties of the datasets, and
thus, when being applied to new databases, λ2 should be
tuned carefully.

• Comparing the last column of Fig. 9 to the first two
columns, we find that the performance margins are rela-
tively small by adjusting λ1 and λ3. In particular, LRP-tP
obtains stable performance with different settings of λ1
in most cases, showing the consistent reliability of the
low-rank tensor based self-representation module. When
λ2 is fixed, the performance of LRP-tP is generally stable
over varying values of λ3. This is because, both modules
explore the supervision from the training labels, and thus,
the effects are related to some extent.

TABLE IV

ABLATION STUDY ON DIFFERENT MODULES OF LRP-TP

Fig. 10. Empirical convergence of LRP-tP.

3) Convergence Analysis: Since the theoretical convergence
of the ADMM framework is not guaranteed with more than
two block variables [53], we investigate the empirical con-
vergence of LRP-tP instead. The residuals of variables are
plotted in Fig. 10. We can see that the residuals drop quickly
within few iterations. Generally, LRP-tP can reach the smallest
residuals within 20 iterations, showing that LRT-2DP holds a
fast convergence property in real scenarios.

V. CONCLUSION

In this paper, we proposed a Low-Rank Preserving t-Linear
Projection (LRP-tP) model for robust image feature extraction.
LRP-tP overlays the advantages of the robustness of self-
representation learning, the discrimination information from
data labels, and the flexibility of adaptive graph learning. More
importantly, LRP-tP can simultaneously exploit the correlation
among the multi-way data structure by taking advantage of the
t-product-based operations. The development of LRP-tP opens
up new avenues for developing powerful projection learning
methods that are specialized for the multi-way data.

Motivated by the good performance of LLRSE and other
sparse feature selection models [54], [56], it is highly expected
to introduce some constraints on the basis slices of LRP-tP
for joint feature selection and projection learning. In light of
the fact that the t-product can be carried out efficiently in the
Fourier domain, it might be possible to learn the constrained t-
linear basis slices in the Fourier domain. Yet, how to associate
the constraints in the Fourier with those in the original domain
is an open problem. Our future work will investigate this topic.

APPENDIX

Proof: Owning to the conjugate symmetry of the
Fourier transform, we have the observation fft(R�, [ ], 3) =
(fft(R, [ ], 3))�. Note that this equation is also used for the
proof of t-SVD (Theorem 4.1, [41]).

The proof of Theorem 1 is by construction. First, let
the third dimension of the variable tensors be n3, we can
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diagonalize R� ∗ N1 − N2 based on Fact 1 as⎡
⎢⎢⎢⎢⎢⎣

R(1)�
f

R(2)�
f

. . .

R(n3)
�

f

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

N (1)
1 f

N (2)
1 f

. . .

N (n3)
1 f

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

N (1)
2 f

N (2)
2 f

. . .

N (n3)
2 f

⎤
⎥⎥⎥⎥⎦ , (29)

where R f , N1 f , and N2 f are computed by applying FFT on
R, N1, and N2 along the third dimension.

Similarly, R� ∗ R = I is diagonalized as⎡
⎢⎢⎢⎢⎢⎣

R(1)�
f

R(2)�
f

. . .

R(n3)�
f

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

R(1)
f

R(2)
f

. . .

R(n3)
f

⎤
⎥⎥⎥⎥⎦= I.

(30)

The original problem Eq. (18) is therefore transformed into
independent problems with respect to the frontal slices

min
R(k)

f

�R(k)�
f N (k)

1 f − N (k)
2 f �2

F

s.t . R(k)�
f R(k)

f = I, (31)

for k = 1, . . . , n3. Eq. (31) can be solved by the
orthogonal Procrustes problem in the complex space
(APPENDIX B, [57]). Let the economy-size complex-valued
SVD of N (k)

1 f N (k)�
2 f be W SV �. Then, R(k)∗

f = W V �, and the
solution of Eq. (18) is recovered from R = ifft(R f , [ ], 3)

On the other hand, since the t-SVD is implemented in
the Fourier domain (Theorem 4.1, [41]), the optimization of
Eq. (31) for k = 1, . . . , n3 is equivalent to calculating t-SVD
as N1 ∗ N �

2 = W ∗ S ∗ V �, and then setting R∗ = W ∗ V �.
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